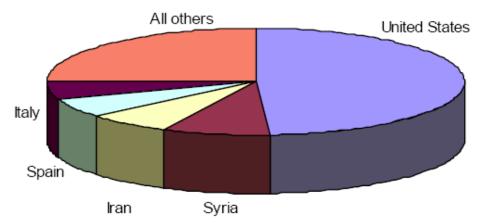
Thermal Inactivation Kinetics for Salmonella Enteritidis PT30 on Almonds Subjected to Moist-Air Convection Heating

SANGHYUP JEONG¹, BRADLEY P. MARKS¹, AND ALICIA ORTA-RAMIREZ²

¹Biosystems and Agricultural Engineering, Michigan State University ²Food Science, Cornell University

> Inverse Problems Symposium 2009 May 31-June 2, Michigan State University



ISP 2009

Almond Industry (USA)

- World's biggest producer & exporter
 - ¾ of the world market in 2003 (in-shell & shelled)
 Figure 6

World almond production, by country, 2004

Source: Food and Agriculture Organization, United Nations.

Health Risk & Impact

Outbreaks

 California almonds were implicated in two widely publicized outbreaks of salmonellosis in the past five years, prompting a recall of nearly 13 million lbs of raw almonds

Regulation

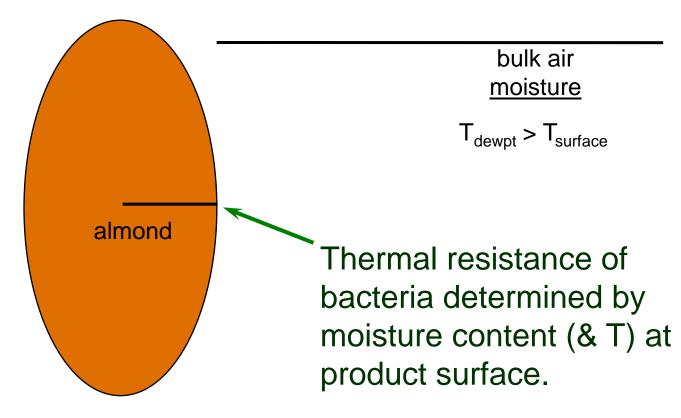
 Mandatory pasteurization of California almonds, and the final rule was recently published (7 CFR Part 981.442).

• Impact

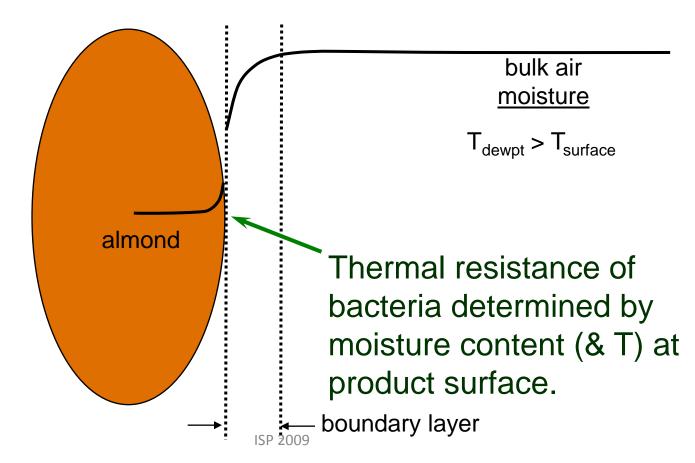
 A significant, industry-wide demand for technologies and process validation tools to achieve safety and quality goal.

Thermal Inactivation

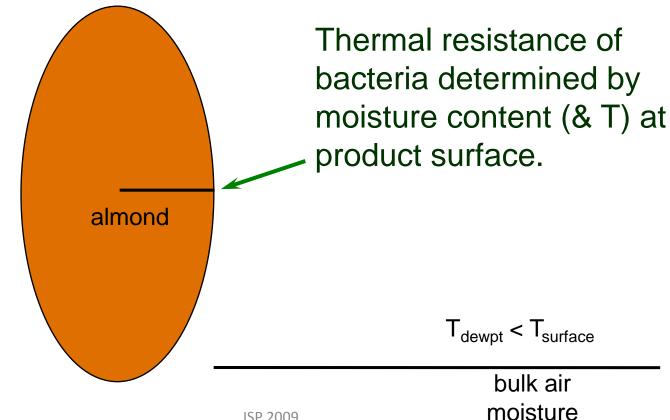
- Moist-air Impingement Cooking System
 - Jet of steam-air mixture through an array of nozzles or slots onto the food product
 - High heat transfer rate by reducing boundary layer thickness at the surface of the product
 - Fast cooking and better water retention of processed products
- Dynamic process
 - Condensation & Evaporation

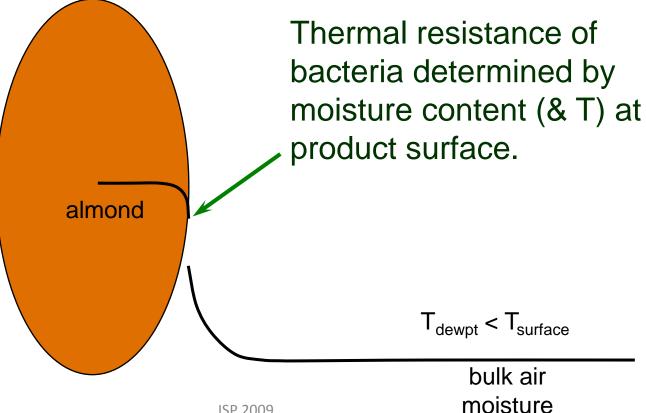

Challenges

- Measuring accurate surface temperature.
- Difficulties in defining surface moisture state and real-time measurement.
- Complexities with the behavior of microorganisms in dynamic water activity.


Objectives

- To develop a mathematical model predicting decimal reduction time (D-value) for thermal inactivation of *Salmonella* Enteriditis PT30
 - on the surface of almonds
 - subjected to moist-air heating
 - as a function of almond surface temperature and process humidity


• Initial condition


• Condensation

• Evaporation starts.

• Evaporation

Model Development

- *D-value*: time required to achieve 90% reduction of microbial population
- *Z-value*: temperature dependency of D-value
- Traditional model: $D = f(T; D_p, z)$

$$D = D_r \cdot 10^{\left((T_r - T)/z \right)}$$

- dependent only on process temperature (T)
- Needs:
 - Effect of varying <u>water status at the surface</u> ('surface wetness') of almonds during moist-air heating need to be defined.

Model Development

Ws • Transient surface wetness (*W*) due to condensation and evaporation of wet moist-air:

- $W_s = a(T_d - T_s) + b$ Modified kinetic model for D-value:

$$- D = f(T_s, T_d; D_{ref}, z_T, z_M)$$

$$D_{Ts,Td} = D_{ref} \cdot 10 \underbrace{\left(\frac{T_{ref} - T_s}{z_T}\right)}_{ZT} \underbrace{\left(\frac{T_{d,ref} - T_d}{z_M}\right) - \left(T_{ref} - T_s\right)}_{z_M}$$

MICHIGAN STATE

evaporation

s

Condensation

 T_d

dry

Model Parameter Estimation

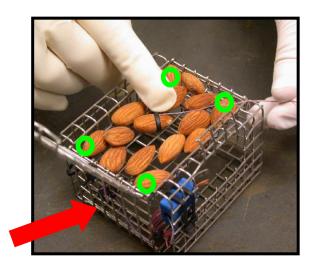
- Cumulative log reduction:
 - Numerical integration for <u>non-isothermal</u> process

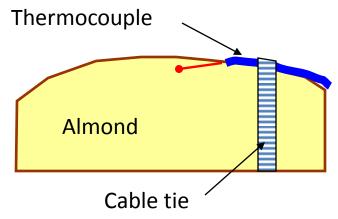
$$\log\left(\frac{N}{N_0}\right) = -\int_0^t \left(D_{T_s,T_d}^{-1}\right) dt$$

- Parameters in the modified model:
 - $T_r = 82^{\circ}$ C, $T_{d,r}$ =midpoint in a range
 - D_r , z_T , z_M were optimized to minimize \sum SSE of log reduction using Excel SOLVER

n stat

Thermal Treatment

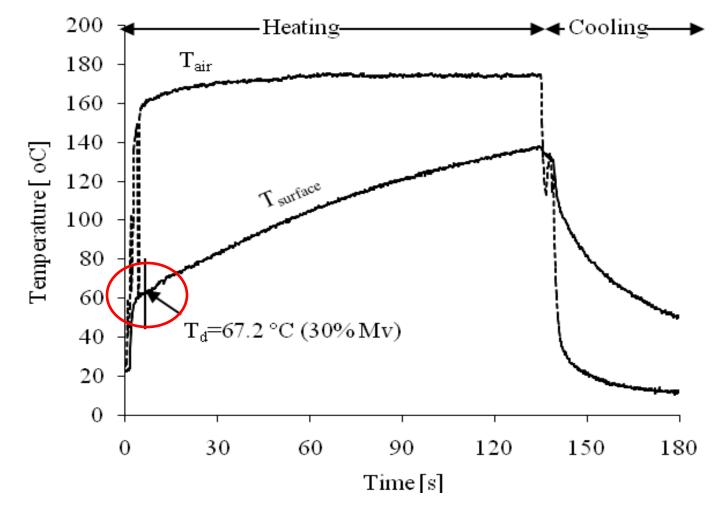

- Experiment design:
 - Full factorial design: 125 conditions
 - 5 dry bulb temperatures
 - 121, 149, 177, 204, 232 °C
 - 5 air humidities
 - ~0, 30, 50, 70, 90 % MV
 - 5 heating durations designed to achieve:
 - 0.5, 2, 3.5, 5, 6 log red.
 - 2 replications for each condition
- Equipment:
 - Computer controlled, lab-scale, moist-air convection oven
- Treatment:
 - Heating samples for each specific duration
 - Immediate cooling in 40°F circulating air after heating



CHIGAN STAT

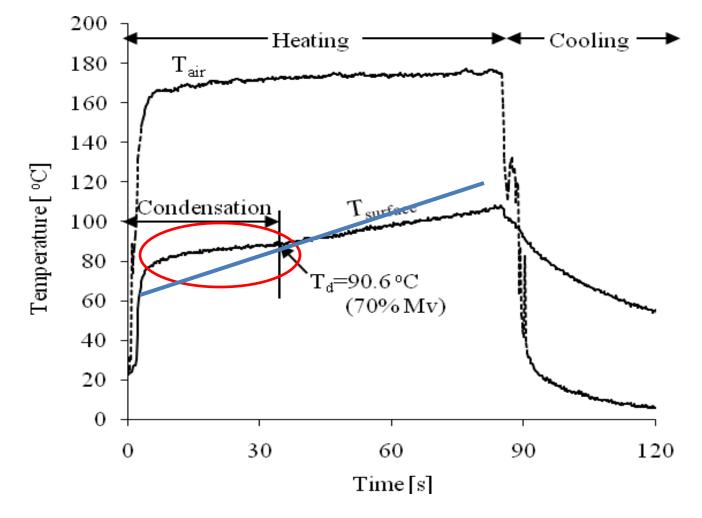
Surface Temperature Measurement

- Loading:
 - Approximately 15 g of inoculated almonds per rack
- Thermocouple wires:
 - T-type/36-gauge/pre-fused junction
- Measures:
 - Temperature just below the almond surface (< 1mm)
 - Negligible spatial variability in temperature measurement

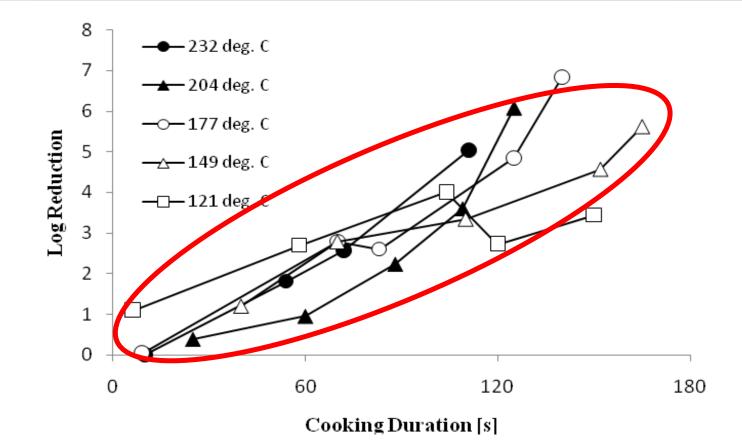

STAT

MICHIGAN

Model Validation


- 1/3 of the data were used for validation statistics
- Best-fit parameters were determined for the five sub-sets of process humidity levels.

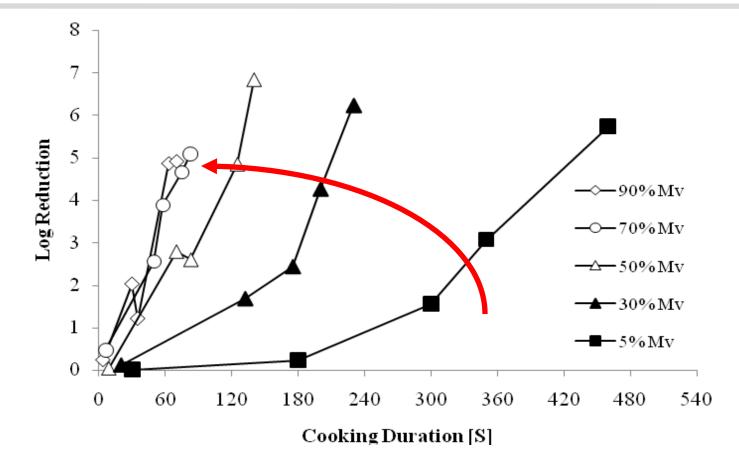
Results: Low process humidity



MICHIGAN STATE U N I V E R S I T Y

Results: High process humidity

Results: Process Effects



Effect of process humidity and temperature on log reduction of *Salmonella* Enteritidis PT30 on the surface of almond at 50% Mv.

MICHIGAN STATE

ISP 2009

Results: Process Effects

Effect of process humidity and temperature on log reduction of *Salmonella* Enteritidis PT30 on the surface of almond at 177°C.

MICHIGAN STATE U N I V E R S I T Y

ISP 2009

Results: Traditional Model

υνινεκδιιγ	Resu	ults: Traditional Model								
			Traditional Model							
Г		Humidity (%Mv)	Dry (5)	Low (30~50)	Medium (50~70)	High (70~90)	Full (5~90)			
	Model	<i>RMSE</i> No. of data	1.00	1.37	1.06	0.94	2.52			
		10. 01 uata	14 (0 ^c)	34 (1)	35 (1)	30 (0)	78 (1)			
	Validation	<i>RMSE</i> No. of data	1.07 11 (0)	2.25	1.65 14 (0)	1.18 15 (0)	2.56 40 (1)			
		10. 01 uata	11 (0)	14 (0)	14(0)	15 (0)	+0 (1)			
	Parameters	D _{ref} [s]	2925 90	52.43	30.83	19.08	86.27			
		z_T [°C]	45.19	1.47×10^{6}	2.31×10^{6}	3.01×10 ³	3.04×10 ⁷			
		T _{ref} [°C]	82.22	82.22	82.22	82.22	82.22			
		z_M [°C]	NA ^e	NA	NA	NA	NA			
		T _{d,ref} [°C]	NA	NA	NA	NA	NA			
				150 2009			21			

Results: Modified Model

MICHIGAN STATE U N I V E R S I T Y

		Modified Model							
	Humidity (%Mv)	Dry (5)	Low (30-50)	Medium (50~70)	High (70-90)	Full (5~90)			
Model	<i>RMSE^d</i>	1.10	0.86	0.65	0.64	1.40			
WIGUEI	No. of data	14 (0)	34 (1)	35 (1)	30(1)	78 (1)			
				\frown					
X7-11-1-41	RMSE	1.23	1.55	0.96	1.06	1.33			
Validation	No. of data	11 (0)	14 (0)	14 (0)	15 (0)	40 (1)			
	$D_{ref}[s]$	957.28	55.74	23.57	16.40	13.94			
	z_T [°C]	14.68	27.89	33.19	44.53	31.95			
Parameters	T _{ref} [°C]	82.22	82.22	82.22	82.22	82.22			
	<i>z_M</i> [°C]	21.74	34.19	36.61	54.82	40.73			
06/01/09	$T_{d,ref}$ [°C]	43.89 (9%Mv)	76.11 (40%Mv)	86.11 (60%Mv)	93.89 (80%Mv)	78.89 (45%Mv)			

Conclusions

- Modified dynamic D-value model was successful for predicting the log reduction of *Salmonella* PT30 on almonds subjected to a <u>moist-air</u> convection process.
- Modified dynamic D-value model was more <u>robust</u> and generally more <u>accurate</u> than the conventional D-value model.

Questions

